The wake-promoting peptide orexin-B inhibits glutamatergic transmission to dorsal raphe nucleus serotonin neurons through retrograde endocannabinoid signaling.

نویسندگان

  • Samir Haj-Dahmane
  • Roh-Yu Shen
چکیده

The wake-promoting neuropeptides orexins (hypocretins) play a crucial role in controlling neuronal excitability and synaptic transmission in the CNS. In this study, using whole-cell patch-clamp recordings in an acute dorsal raphe nucleus (DRN) slice preparation, we report that orexin B (Orx-B) depresses the evoked glutamate-mediated synaptic currents in DRN 5-HT neurons. The Orx-B-induced depression is accompanied by an increase in the paired-pulse ratio and the coefficient of variance, suggesting a presynaptic site of action. Orx-B also reduces the frequency but not the amplitude of miniature EPSCs, indicating that depression of glutamatergic transmission is mediated by a decrease in glutamate release. Surprisingly, the Orx-B-induced inhibition of glutamatergic transmission is abolished by postsynaptic inhibition of G-protein signaling with GDPbetaS, suggesting that this effect is signaled by postsynaptic orexin receptors and expressed presynaptically, presumably through a retrograde messenger. Interestingly, the Orx-B-induced depression of glutamate release is mimicked and occluded by the cannabinoid receptor agonist WIN 55,212-2, and is abolished by the CB1 cannabinoid receptor antagonist AM 251. These results imply that the Orx-B-induced depression of glutamatergic transmission to DRN 5-HT neurons is mediated by retrograde endocannabinoid release. Examination of downstream signaling pathways involved in this response indicates that the effect of Orx-B requires the activation of phospholipase C and DAG lipase enzymatic pathways but not a rise in postsynaptic intracellular calcium. Therefore, our findings reveal a previously unsuspected mechanism by which postsynaptic orexin receptors can modulate glutamatergic synaptic transmission to DRN 5-HT neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Paraventricular thalamic nucleus: subcortical connections and innervation by serotonin, orexin, and corticotropin-releasing hormone in macaque monkeys.

The present study examines subcortical connections of paraventricular thalamic nucleus (Pa) following small anterograde and retrograde tracer injections in cynomolgus monkeys (Macaca fascicularis). An anterograde tracer injection into the dorsal midline thalamus revealed strong projections to the accumbens nucleus, basal amygdala, lateral septum, and hypothalamus. Retrograde tracer injections i...

متن کامل

Endocannabinoids suppress excitatory synaptic transmission to dorsal raphe serotonin neurons through the activation of presynaptic CB1 receptors.

Endocannabinoid signaling in the dorsal raphe (DR) has recently been implicated in the regulation of anxiety and depression. However, the cellular mechanisms by which endocannabinoids (eCBs) regulate the excitability of DR 5-hydroxytryptamine (serotonin; 5-HT) neurons remain poorly understood. In the present study, using whole-cell recording from DR 5-HT neurons, we examined the effects of eCBs...

متن کامل

The effect of desmopressin infusion into dorsal raphe nucleus on pain modulation and morphine analgesia in rats tail flick reflex

Recent neuroanatomical and behavioral evidence has indicated that vasopressin (VA) increases pain threshold. The dorsal raphe nucleus (DRN) is an important nucleus in pain modulation. Anatomical studies have shown that DRN receives vasopressinergic fibers originating in the hypothalamic paraventricular nucleus. The aim of the present study was to examine the effects of intra-DRN injection of de...

متن کامل

Neuronal connectivity between habenular glutamate‐kisspeptin1 co‐expressing neurons and the raphe 5‐HT system

The habenula, located on the dorsal thalamic surface, is an emotional and reward processing center. As in the mammalian brain, the zebrafish habenula is divided into dorsal (dHb) and ventral (vHb) subdivisions that project to the interpeduncular nucleus and median raphe (MR) respectively. Previously, we have shown that kisspeptin 1 (Kiss1) expressing in the vHb, regulates the serotonin (5-HT) s...

متن کامل

GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing–Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus

The dorsal raphe nucleus (DRn) receives glutamatergic inputs from numerous brain areas that control the function of DRn serotonin (5-HT) neurons. By integrating these synaptic inputs, 5-HT neurons modulate a plethora of behaviors and physiological functions. However, it remains unknown whether the excitatory inputs onto DRn 5-HT neurons can undergo activity-dependent change of strength, as well...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 25 4  شماره 

صفحات  -

تاریخ انتشار 2005